Hybrid Unsupervised-Supervised Machine Learning Models for Materials Science

Rose K. Cersonsky

Laboratory of Computational Science and Modeling (COSMO) École Polytechnique Fédérale de Lausanne (EPFL)

A couple words on notation...

$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \dots \end{bmatrix}$	A matrix containing as rows the fingerprints of a set of structures
$\mathbf{Y} = \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \\ \dots \end{bmatrix}$	A matrix containing as rows the target properties for a set of structures

P _{AB}	A matrix that projects from space A to space B
$\mathbf{T} = \mathbf{X}\mathbf{P}_{\mathrm{XT}}$	A matrix containing as rows the latent-space projection of a set of structures

Principal Components Analysis (PCA)

PCA determines an information-rich set of features to represent a larger set of features.

 $\ell = \|\mathbf{X} - \mathbf{X} \mathbf{P}_{\mathrm{XT}} \mathbf{P}_{\mathrm{TX}}\|^2$

This is solved by constructing the projectors from the eigendecomposition of either the Gram matrix K or the covariance C (analogous to the SVD of X)

$$\mathbf{K} = \mathbf{X}\mathbf{X}^{\mathrm{T}}$$

gram matrix

 $\mathbf{C} = \mathbf{X}^{\mathrm{T}}\mathbf{X}$

covariance matrix

Inputs: sklearn.datasets.make_blobs Regression Model: RidgeCV(cv=5)

S. de Jong, H.A.L. Kiers, Chemom. intell. lab. syst. 14 (1992) 155-164. scikit-cosmo.readthedocs.io

November 19, 2021

Statistical Thermodynamics and Molecular Simulations

Principal Covariates Regression (PCovR)

is a dimensionality reduction technique that determines a latent-space projection that incorporate saspects of supervised learning.

S. de Jong, H.A.L. Kiers, Chemom. intell. lab. syst. 14 (1992) 155-164. scikit-cosmo.readthedocs.io Inputs: sklearn.datasets.make_blobs Regression Model: RidgeCV(cv=5)

November 19, 2021

Principal Covariates Regression (PCovR)

is a dimensionality reduction technique that determines a latent-space projection that incorporate saspects of supervised learning.

S. de Jong, H.A.L. Kiers, Chemom. intell. lab. syst. 14 (1992) 155-164. scikit-cosmo.readthedocs.io

November 19, 2021

Principal Covariates Regression (PCovR)

is a dimensionality reduction technique that determines a latent-space projection that incorporate saspects of supervised learning.

S. de Jong, H.A.L. Kiers, Chemom. intell. lab. syst. 14 (1992) 155-164. scikit-cosmo.readthedocs.io Inputs: sklearn.datasets.make_blobs Regression Model: RidgeCV(cv=5)

November 19, 2021

PCovR is controlled by a mixing parameter α that weights the regression and decomposition tasks.

PCovR is controlled by a mixing parameter α that weights the regression and decomposition tasks.

PCovR is controlled by a mixing parameter α that weights the regression and decomposition tasks.

Kernel Principal Covariates Regression

Determines a low-dimension projection from a similarity kernel, considering target data when constructing the projection.

Inputs: SOAP features of 10,000 AIRSS carbon crystals Target: energies in [eV / atom] Kernel Parameters: RBF kernel, γ =10^{-3.8} (1/1) train / test split

B. A. Helfrecht, **RKC**, G. Fraux, and M. Ceriotti. 2020 Mach. Learn.: Sci. Technol. 1 045021 C. J. Pickard. AIRSS Data for Carbon at 10GPa and the C+N+H+O System at 1GPa (2020). <u>scikit-cosmo.readthedocs.io</u>

November 19, 2021

Kernel Principal Covariates Regression

Determines a low-dimension projection from a similarity kernel, considering target data when constructing the projection.

Inputs: SOAP features of 10,000 AIRSS carbon crystals Target: energies in [eV / atom] Kernel Parameters: RBF kernel, γ =10^{-3.8} (1/1) train / test split

B. A. Helfrecht, **RKC**, G. Fraux, and M. Ceriotti. 2020 Mach. Learn.: Sci. Technol. 1 045021 C. J. Pickard. AIRSS Data for Carbon at 10GPa and the C+N+H+O System at 1GPa (2020). <u>scikit-cosmo.readthedocs.io</u>

November 19, 2021

What if the features carry inherent meaning?

Many dimensionality reduction techniques construct a *new* set of features, but what if you want to just work with a subset of the old set?

Farthest Point Sampling (FPS)

FPS aims to select a diverse subset of features or samples that cover the greatest portion of sample or feature space.

Farthest Point Sampling

- 1. Choose a first point
- 2. Compute distance *d*
- 3. Choose point with highest min(d) to the selected points
- 4. Repeat 1-3 until you have enough features!

CUR Decomposition

Traditional CUR decomposition selection aims to select "important" features or samples from the overall distribution.

CUR Decomposition

Traditional CUR decomposition selection aims to select "important" features or samples from the overall distribution.

CUR Decomposition

- 1. Compute importance score π
- 2. Choose column with highest π
- 3. Orthogonalize with respect to last chosen column.
- 4. Repeat 1-3 until you have enough features!

PCov-FPS and Pcov-CUR

Both FPS and CUR can be translated to PCovR space for both feature (and sample) selection.

 $\tilde{\mathbf{C}} = (\mathbf{C}^{-1/2}\mathbf{X}^{\mathrm{T}})\tilde{\mathbf{K}}(\mathbf{X}\mathbf{C}^{-1/2})$

feature selection

P**€6**¥1

Linear Regression

Using PCov-style feature selection will universally out-perform common feature selection metrics available via popular packages.

Inputs: SOAP vectors for small molecules containing C + H + N + O, (9 / 1) train / test split Target: NMR chemical shieldings in ppm Model used: 5-fold cross-validated linear ridge regression

RKC, et al 2021 Mach. Learn.: Sci. Technol. 2 035038 <u>scikit-cosmo.readthedocs.io</u> Model used: 5-told cross-validate

November 19, 2021

Behler-Parinello Neural Networks

Introducing supervised aspects to feature selection invariably improves regression performance – even in non-linear models -- such as determining energies and forces using a neural network.

Inputs: symmetry functions of benzene rings from a simulation trajectory, (7/2/1) train / validation / test split Target: energies in [meV / atom]

Models used: 5-fold cross-validated linear ridge regression, Behler-Parinello Neural Network

RKC, et al 2021 Mach. Learn.: Sci. Technol. 2 035038 scikit-cosmo.readthedocs.io

November 19, 2021

kernel-tutorials A set of utilities and pedagogic notebooks for the use of linear and kernel methods in atomistic modeling <u>https://www.github.com/cosmoepfl/kernel-tutorials/</u>

librascal A scalable and versatile library to generate representations for atomic-scale learning <u>https://www.github.com/cosmoepfl/librascal/</u>

chemiscope

chemiscope is an interactive structure/property explorer for materials and molecules. The goal of chemiscope is to provide interactive exploration of large databases of materials and molecules and help researchers to find structure-properties correlations inside such databases. <u>chemiscope.org</u>

Hybrid Unsupervised-Supervised Machine Learning Models for Materials Science <u>Rose K. Cersonsky</u>

B. A. Helfrecht, **RKC**, G. Fraux, and M. Ceriotti

"Structure-property maps with Kernel principal covariates regression." 2020 Mach. Learn.: Sci. Technol. 1045021.

https://iopscience.iop.org/article/10.1088/2632-2153/aba9ef

RKC, B. A Helfrecht, E. A. Engel, and M. Ceriotti . "Improving Sample and Feature Selection with Principal Covariates Regression" 2021 Mach. Learn.: Sci. Technol. 2 035038

https://doi.org/10.1088/2632-2153/abfe7c.

G. Fraux, **RKC**, M. Ceriotti. "Chemiscope" 2020 Journal of Open Source Software, 5(51), 2117. <u>https://doi.org/10.21105/joss.02117</u>

S. de Jong, H.A.L. Kiers "Principal Covariates Regression: Part 1." Chemom. intell. lab. syst. 14 (1992) 155-164. https://doi.org/10.1016/0169-7439(92)80100-I

https://www.github.com/cosmoepfl/scikit-cosmo/

erc

PCovR

GFRE

Come see me at MRS! BI02 & CH04

November 19, 2021