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Optical properties of the iridescent organ of
the comb-jellyfish Beroé cucumis (Ctenophora)
Victoria Welch, et al.
Phys. Rev. E 73, 041916 2006

Optical properties of gyroid structured materials: from photonic

crystals to metamaterials
James A. Dolan , et al.

Advanced Optical Materials 3 (1), 12-32

November 7, 2021

Colloidal crystals with Colloidal Diamond

diamond symmetry at He, M., et al.

optical lengthscales Nature 585, 524-529

Yifan Wang, et al. (2020).

Nature Comm. 8, 14173

(2017) Diamond family of
nanoparticle

Entropy driven superlattices

assembly of truncated W. Liu, et. al,
colloidal tetrahedra into Science 351, 582-586
diamond structure (2016).
Zhe Gong, et al.




Relevance of packing to colloidal self-assembly.

Cersonsky, R. K., van Anders, G., Dodd, P. M., & Glotzer, S. C. (2018).
Proceedings of the National Academy of Sciences, 115(7), 1439-1444.
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Pressure-Tunable Photonic Band Gaps in an Entropic Colloidal Crystal

Cersonsky, R. K., Dshemuchadse, J., Antonaglia, J., van Anders, G., & Glotzer,
S. C. (2018). Physical Review Materials, 2(12), 125201.
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« Small distortions in
diamond did not destroy
the photonic band gap

At time of presentation, this manuscript was not yet
published, please see for recent
publications.
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...omall distortions in diamond did not destroy the photonic band gap...

...minimal effect on the photonic band structure...

what is the span of crystallographic structures capable of supporting a photonic band gap?
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Scraped 1300 unique
crystal structures from
crystal repositories

“Direct”
high dielectric
medium on
lattice sites

“Inverse”
low dielectric
mediumon
lattice sites

Ignoring atomic species,
turned each structure into
2 templates with which to

sample multiple
parameters

—

Ran >150,000 band
structure to determine
which “templates”
supported PBGs
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351 Photonic
“Templates”

474 Unique Gaps

Database of Photonic Crystals:

https://glotzerlab.engin.umich.edu/ph
otonics/index.html

Appendix of Band Structures:
https://deepblue.lib.umich.edu/handle

[2027.42/153520

Each circle represents the maximum gap (circle size) found for a given template (radius), dielectric contrast (ring), and band location (color).
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Inverse Simple Cubic (cP7) Hexagonal Diamond (hP4)
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Each circle represents the maximum gap (circle size) found for a given template (radius), dielectric contrast (ring), and band location (color)
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Each circle represents the maximum gap (circle size) found for a given template (radius), dielectric contrast (ring), and band location (color).
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Inverse Clathrate-ll
Maximum Gap: 33.9%

1.0
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Inverse Clathrate-Il (cF136), ©

Clathrate colloidal crystals.

Lin, H., Lee, S., Sun, L., Spellings, M.,
Engel, M., Glotzer, S. C., & Mirkin, C. A.
Science, 355(6328), 931-935.



Self-assembly of a space-tessellating
structure in the binary system of hard
tetrahedra and octahedra.

Cadotte, Andrew T., et al.
Soft matter 12.34 (2016): 7073-7078.

Each circle represents the maximum gap (circle size) found for a given template (radius), dielectric contrast (ring), and band location (color).

November 7, 2021

Lithium Oxide (cF12)<\

oo o, / /

{(

- P(CCCCCCCC D e,

&
&
&

&
&

The lithium-oxide
structure (a.k.a. Fluorite, c-

O@@O o
F F g, % &
o ®0 o r g »
& ° N %. & OT, and F-RD) exhibits
A . %0 G R ’
LT . ] % (;,% ﬁ'é. photonic anomalies,
Q © e . rr% % %.. (] including a band gap that
$ = 2 .
g « & &% %% is largest at lower
N A KRR dielectric contrast.

o 4

(«‘((((“. *e.,

AIChE

¢ .
[s! o
¢ s
g o
& , > §
. v N £=6 . o~/ Lithium Oxide (cF12)
‘ °
‘@ ® ‘e N e=0 < 4 o
° @ o.
NS 5 e y /iy y
\ ~, £=12 et »
®
N ey &
\ e=14 ‘o
€= 16



How else can we use this large dataset?
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Database of Photonic Crystals:
https://glotzerlab.engin.umich.edu/photonics/index.html
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PHYSICAL REVIEW LETTERS

week ending

PRL 98, 146401 (2007) 6 APRIL 2
Generalized Neural-Network of High- i P ial-Energy Surfaces
Jorg Behler anf
Departmen of Chemistry and Applied Bisciences, ETH Zuric
(Received 27 September]

The accurate description of chemical processd
methods like density-functional theory (DFT), nf
this Letter we introduce a new kind of neural-n]
which provides the energy and forces as a functiol
is several orders of magnitude faster than DFT. T
silicon and compared with empirical potentials ar
types of periodic and nonperiodic systems.

DOL: 10.1103/PhysRevLett.95.146401

The reliability of molecular dynamics (MD) of
Monte Carlo (MC) simulations depends crucially on th
accuracy of the underlying potential-cnergy surface (PES
Ab initio methods based on density-functional theory [1
(DFT) provide accurate PESs for many systems, but the;
are computationally very demanding and even on the mos
advanced platforms ab initio MD simulations are limited
tens of picoseconds and a few thousand atoms. This is th
reason for the continuing popularity of cmpirical potential
which provide fast access o energy and forces. Howeve]
the construction of reliable empirical potentials is a diff]
cult and lengthy process which usually relies on fitting thy
parameters of a guessed, physically motivated simple func]
tional form for the interaction potential. This can lead t
qualitatively wrong results when used in circumstances i
which the assumed functional form is not appropriate. Th
database used in the fitting can include experimental
theoretical data and even the forces obtained in an ab i
MD run [2-4]

In this Letter we present a generalized neural-networ)
(NN) method for constructing DFT-based PESs which havi
ab initio accuracy and are capable of deseribing all types o
bonding. The method overcomes the limitations that hav
so far restricted the use of NN to low-dimensional PES|
[5.6]. This is achieved by combining NN precision an
flexibility with a PES representation that is inspired b
empirical potentials. The resulting many-body potential
are a function of all atomic coordinates and can be used i
systems of arbitrary size. We apply our ideas to the con)
struction of an NN-based many-body potential for bull
silicon. Constructing an empirical potential for Si that i
valid across the phase diagram has proven to be a frustrad
ing challenge for conventional empirical potentials. Ouf
potential works well in the solid semiconducting and in th
liquid metallic phases. In addition we can reproduce th
small cnergy differences between the different high
pressure phases of crystalline Si.

Neural networks are biology-inspired algorithms tha)

provide an accurate tool for the representation of arbitrary
Functions. Given a number of points in which the value o

0031-9007/07/98(14)/146401(4) 1

PRL 104, 136403 (2010)

PHYSICAL REVIEW LETTERS

week ending
2"APRIL 2010

Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons

Albert P. Bartok
Cavendish Laboratory, University of Cambridge, 1 J T}

Risi
Center for the Mathematics of Information, California Institu]

Giibor
Engineering Laboratory, University of Cambridge, Tru
(Received 1 October 1

We introduce a class of interatomic potential m|

consisting of the energies and forces experience

calculations. The models do not have a fixed functi

potential energy landscapes. They are systematically

bulk crystals, and test it by calculating properties at

generate the long molecular dynamics. trajectori
‘magnitude in computational cost.

DO 10.1103/PhysRevLett 104.136403

Atomic scale modeling of materials is now routinely and
widely applied, and encompasses a range of techniques
from exact quantum chemical methods [1] through density
functional theory (DFT) [2] and semiempirical quantum
mechanics [3] to analytic interatomic potentials [4]. The
associated trade-offs in accuracy and computational cost
are well known. Arguably, there is a gap between models
that treat electrons explicitly and those that do not. Models
in the former class are in practice limited to handling a few
thousand atoms, while the simple analytic interatomic
potentials are limited in accuracy, regardless of how they
are parametrized. The panels in the top row of Fig. 1
illustrate the typical performance of analytic potentials in
bulk semiconductors. Perhaps surprisingly, potentials that
are generally regarded as adequate for describing these
bulk phases show significant deviation from the quantum
mechanical potential energy surface. This in turn gives tise
to significant errors in predicting properties such as elastic
constants and phonon spectra

In this Letter we are concerned with the problem of
modeling the Born-Oppenheimer potential energy surface
(PES) of a set of atoms, but without recourse to simulating
the electrons explicitly. We mostly restrict our attention to
modeling the bulk phases of carbon, silicon, germanium,
iron, and gallium nitride, using a unified framework. Even
such single-phase potentials could be useful for calculating
physical properties, ¢.g., the thermal expansion coefficient,
the phonon contribution to the thermal conductivity, the
temperature dependence of the phonon modes, or as part of
hybrid schemes [5].

The first key insight is that this is actually practicable:
the reason that interatomic potentials are at all useful is that
the PES is a relatively smooth function of the nuclear
coordinates. Improving potential modeling is difficult nor

0031-9007/10/104(13)/136403(4) 1364
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PHYSICAL REVIEW B 87, 184115 (2013)

Albert P. Bartok, " Risi

' Department of Engineering, University of Cambridge,
2Department of Computer Science, University of Chic.
(Received 12 December 2012; publis!

We review some recently published methods to
their relative merits in terms of their faithfulness and s
properties that such representations (sometimes called|
to moving the atoms and invariance o the basic syn)
tation of atoms of

quite different are specific cases of a general approact
angular wave numbers are sed to expand the atomic
of small clusters, we quantitatively show that this ex|
‘numbers as the number of neighbors increases in orde
the descriptors converge at very different rates. We al
Overlap of Atomic Positions, that sidesteps these diff
two neighborhood eavironments, and show that it s st
the performance of the various representations by fit
clusters and the bulk crystal.

DOL: 10.1103/PhysRevB.87.184115

L INTRODUCTION

e of atomic isa

crucial

9
E
e

chemistry and condensed matter physics. For example, in
structure search applications,’ each configuration depends
numerically on the precise i
of the seard

cquivalent

dynamics simulations of phase transitions,” one needs good
order parameters that arc capable of detecting changes in the
local order around atoms. Typically, the representation is in
terms of a descriptor (also called a fingerprint), a tuple of real
valued functions of the atomic positions, .g., bond lengths,
bond angles, etc.
of chemical informatics also rely on characterizing molecules
using descriptors. When constructing interatomic potentials
and fitting potential energy surfaces (PES),** the driving
application behind this work, the functional forms depend on
components of a carefully chosen representation of atomic
neighborhoods.

While specifying the position of each atom in a Cartesian
coordinate system provides a simple and unequivocal descrip-
tion of atomic configurations, it is not dircctly suitable for

i

al conditions and the path
h, so it is im to be able to identify
structures and detect similarities. In molecular

“In silico” drug discovery™* and other areas

is ordered arbitrarily and two structures might be mapped to
cach other by a rotation, reflection, or translation so that two
different lists of atomic coordinates can, in fact, represent
the same or very similar structures. A good representation i

rotational, reflectional,

and translational symmetries, while retaining the faithfulness
of the Cartesian representation. In particular, a system of
invariant descriptors g1,qz, ...

if

1098-0121/2013/87(18)/184115(16) 184

uniquely determines the atomic environment, up to
symmetries. It is said to be overcomplete if it contains spurious
descriptors in the sense that a proper subset of {g1.z. ... gu}
is by fscl, complet, If a vepresemiation 1 compie, thn

\qu is said to be complete

Downloaded vis FCOLT POL Y TECTIRTCTED T ATSANKE on November

for options on how to

On representing chemical environments
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970 Million Druglike Small Moleculd
Universe D;

Lorenz C. Blum an}
Department of Chemistry and Biochemistry, Univey

Received March 24, 2009; E-

One of the most important chemical issues in drug discovery i
innovation, in particular at the level of small organic ﬁ.\gmenl
that can provide new lead structures.’

‘molecules can be assisted by in silico methods plopisbnltiin
of chemical space, breeding of molecules by genetic algorithms,
and analysis of molecular scaffolds.® We recently proposed an
exhaustive enumeration approach for small organic molecules by

assembling the chemical universe database GDB-11° whic

describes the 26.4 million structures containing up to 11 atoms o
N, O, and F that satisfy simple chemical stability and synthetic
feasibility rules. We now report GDB-13, which enumerates in o
similar manner small organic molecules containing up to 13 atom
of C,N, 0, S, and CL. With 977 468 314 structures, GDB-13 is thel
largest freely available small molecule database to date.

Table 1. Structure Generation Statistics for GDB-13

608" o’ CPU time 1)”
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Machine learning unifies the m
and molecules

Albert P. Barték,' Sandip De,** Garl Poelking,* Noam B
Gabor Csanyi,” Michele Ceriotti***

ility

basad on of chemical Bayesiar

to predict atomic-scale properties. It captures the quantum mech

acive and inactive proten igands with more than 99% relabilty.|
framework provide new insight into the potential energy surface of]
INTRODUCTION

Calculating the energies of molecules and condensed-phase strug
tures is top: the behavior of matter at the atom|

1 1 [ 000
2 3 0 000
3 2 0 000
4 4 0 000
5 155 3 001
6 934 1 o
7 5726 as 005
3 37151 2438 03
9 255542 17086 268
10 1784626 130465 2526
n 12961 636 038704 234
2 99821343 7240108 302379
13 95244451 59027533 3660645
Total 90111673 67356641 3988208

“ Number of graph nodes considered. * Number of graphs coresponding]
to satuniied hydrocarbons passing topological and ring-strin_criteia
* Molecules obtained from the graphs by combinatorial coumeration o
unsaturations _and heteroatoms and satisfying chemical _stability and]
synthetic feasibility criteria. “ Molecules with a selection of CUS-containing]
functional groups (sec the text and Supporting Information for detals).
“The database was computed in parallel on a S00-node cluster (see
‘Supporting Information for detais).

‘The assembly of our previously reported GDB-11 started with

collection of graphs” considered as hydrocarbons, from which chemi

cally relevant cases were selected by topological and ring-strain criteri
b

scale and a formidable challd:l;:g Reliably assessing the relative stabili
of different compounds, and of different phases of the same materid
requires the evaluation of the energy of a given three-dimensional (3]
assembly of atoms with an accuracy comparable with the thermal energ
(~05 keal/mol at room temperature), which is a small fraction of ¢
energy of a chemical bond (up to ~230 kcal/mol for the N; molecul
‘Quantum mechanics s  universal framework that can deliver th]
level of accuracy. By solving the Schrodinger equation, the electron)
structure of materials and molecules can, in principle, be computef
and from it all ground-state properties and excitations follow. The p
‘hibitive uvmpuhnum.l cost of exact mlnmms at the level of dmn
structure theory leads to

SCIENCE ADVANCES | RESEARCH ARTICLE

APPLIED MATHEMATICS

Machine learning of accurate energy-conserving

molecular force fields

Stefan Chmiela,” Alexandre Tkakhenku,u' Huziel E. Sauceda,” Igor Poltavsky,”

Kristof T. Schiitt,” Klaus-Robert Miiller'

2017 © The Authors,
some rghs reserved;
exchusive licensee

American Association
for the Advancement

\Coms
Ucense 46 € BYNO.

Using conservation of energy—a fundamental property of closed classical and quantum mechanical systems—
we develop an efficient gradient-domain machine learning (GDML) approach to construct accurate molecular
force fields using a restricted number of samples from ab initio molecular dynamics (AIMD) trajectories. The

GOML implementation i able o reproduce glabal potential ener
with an accuracy of 0.3 keal mol ™" for energies and 1 keal m«
mational geometries for traini

gy surfaces of intermediate-sized molecules
for atomic forces using only 1000 confor-

demonstrate this accuracy for AIMD trajectories of molecules, including

benzene, toluene, naphthalene, ethanol, uracil, and aspirin. The challenge of constructing conservative force
fields is accomplished in our work by learning in a Hilbert space of vector-valued functions that obey the
law of energy conservation. The GDML approach enables quantitative molecular dynamics simulations for mol-

ecules at a fraction of cost of explicit AIMD calculations, thereby
fields with the accuracy and transferability of high-level ab initio

INTRODUCTION

Oy

the
niques that address different classes ofsysmm Coupled-cluster rc
theory (1) for molecules and density functional theory (DFT) (2-4)
the condensed phase have been particularly successful and can typicall
deliver the levels of accuracy required to address a plethora of importa
scientific questions. The computational cost of these electronic structuf
‘models s nevertheless stil significant, limiting their routine applicati
in practice to dozens of atoms in the case of CC and hundreds in tH
ase of DFT.
“To go further, explicit electronic structure calculations have to

avoided, and we have to predict the en ing to an atom|

introducing
and heteroatoms following valency rules.® The limiting factor in
computing GDB-11 was the elimination from this initial lst of 98.4%)
of unstable and/or chum(:\lly impossible molecules using functional

‘group filtes.
heteroatoms, we reasoned mu it might be possible to accelerate the

using a very fast “el io” fiter. Analysis
of databases of known compounds suggested cutoff values of (N +}
0)/C < 1.0, NIC < 0571, and OIC < 0,666 (see the Supporting
Information). We also eliminated fluorine because it was rarely found]

directly. Although such empirical potential methox
(force fields) are much less expensive, their predictions to date hay
been qualitative at best. Moreover, the number of distinct approachd
has rapidly multiplied; in the struggle for accuracy at low cost, get
erality is invariably sacrificed. Recently, machine-learning (ML) ay
we started to be applied to designing interatomic potentia
that interpolate electronic structure data, as opposed to using pard

TSclentiic Computing Department, Scence and Technclogy Facies Cou
fuherird Appleton Laboratory, Oordshie OX11 00X, UK. “National Cen

and never considered in our group for synthesis in virtual

8732 % J. AM, CHEM. SOC. 2009, 131, 87328733

ey of Novel Materials (MARVEL) Lausan]
s»«uenam Laboratory MCompulauoml Science and Modeling. insttute
Materia jtzertand.,
?irlmen  of Chemistry, University of Cambridge. Camblldge 82 16w, uf
‘Center for Materials Physics and . Naval Research Laborator
Washington, DC 20375, USA. Warwick Centre ictive Modeling, Schol
o Engineering, Univeriy of Wanvick, Coventy CV4 7AL UK "engineering Lal
oratory, Univers , Cambridge, Ul

i b, ek O

Bart6k et al, Sci. Adv. 2017;3:e1701816 13 December 2017

AIChE

tion of the glnba.l potential energy hypersurface Vao(Ti, 7, ..., 1),
where 7 indicates the nuclear Cartesian coordinates. Although
Vio could, in principle, be obtained on the fly using explicit ab initio
calculations, more efficient approaches that can access the long time
scales are required to understand relevant phenomena in large mo-
lecular systems. A plethora of classical mechanistic approximations

allowing the construction of efficient force
methods.

tion of energy s satisfied implicitly within an approximation, this does
notimply that the model will be able to accurately follow the trajectory
of the true ab initio potential, which was used to fit the force field. In
particular, small energy/force inconsistencies between the force field
model and ab initio calculations can lead to unforeseen artifacts in
the PES topology, such as spurious critical points that can give rise
to incorrect molecular dynamics (MD) trajectories. Another funda-
mental problem is that classical and ML force fields focusing on energy
as the main observable have to assume atomic energy additivity—an

t0 Vo have b ed, in whic are typically
fitted to a small set of ab initio calculations or experimental data.
Unfortunately, these classical approximations may suffer from the
lack of transferability and can yield accurate results only close to
the conditions (geometries) they have been fitted to. Alternatively,
sophisticated machine learning (ML) approaches that can accurately
reproduce the global potential energy surface (PES) for elemental
materials(1-9) and I pe

(see Fig. 1, A and B) (17). Although potentially very promising, one par-
ticular challenge for direct ML fitting of molecular PES is the large
fien, many thou-
sands or even millionsof atomic configurations re used astrainin

data for ML models. Thi whichare

that is hard to justify from quantum mechanics.
‘Here, we presenta robust solution to these challenges by construct-
ing an explicily conservative ML force fied, which uses exclusively

jes. In this
‘manner, with any number nfrhra samples, the proposed model fulfills
energy conservation by construction. Obviously, the developed ML
force field can be coupled to a heat bath, making the full system (mol-
ecule and bath) non-energy-conserving,

We remark q h
bles within the BO by virtue of the Hellmann-Fy
theorem. The energy of a molecular system is recovered by analytic
integraton of theforce-fied kernel(sceFig. 1C). We demonstrae that
ourg domain machine learning (GDML) approach is able to

ical obs

difficult to analyze and may bmk consistency (18) between energies
and forces.

A fundamental property that any force field Fy (7%, 7, ..., 7) must
satisfy is the conservation of total energy, which implies that
Fi(rp Ty %) = =ViV (7], 1s..., 7). Any classical mechanistic
expressions for the potential energy (also denoted as classical force
field) or analytically derivable ML trained on energi
isfy energy conservation by construction. However, even if conserva-

Machine Leaming Group, Technische Universitat Berlin, 10587 Berlin, Germany.
Physics and Ml Scince Research Ui, Unversy of Lusembocrg L1511

accurately reproduce global PESs of intermediate-sized molecules
‘within 0.3 keal mol ™ for energies and 1 kcal mol™ A™" for atomic
forces relative to the reference data. This accuracy is achieved when
using less than 1000 training geometries to construct the GDML model
and using energy conservation to avoid overfitting and artifacts. Hence,
the GDML h for MD simula-
tions with PESs that are obtained with arbitrary high-level quantum-
chemical approaches. We demonstrate the accuracy of GDML by
computing AIMD-quality thermodynamic observables using path-
integral MD (PIMD) for eight organic molecules with up to 21 atoms
and four

(DFT) calculations as reference in this ork, it is pos

Luxembourg, Luxemt
14195 Beri, Germany. -Depariment of rain and Cognitve Engineering, Korea
University, Anam-dong, Seongbuk-gu, Seoul 136-713, Korea. Max Planck Institute
fornformats, Stblsatzenhausweg, 66123 Saaoricken, Germany.

Emait (AT); Kaus-robert.
maelergberinde (CRM)

Chmiel et al, Sci. Adv. 2017;3:€1603015 5 May 2017

sible to use any higher-level quantum-chemical reference data. With

state-of-the-art quantum chemistry codes running on current hig

performance computers, it s possible to generate accurate reference
e d H
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Improving sample and feature selection with principal covariates
regression
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Abstract

Selecting the most relevant features and samples out of a large set of candidates is a task that occurs
very often in the contest of automated data analysis, where it improves the computational
performance and often the transferability of a model. Here we focus on two popular subselection
schemes applied to this end: CUR decomposition, derived from a low-rank approsimation of the
feature matrix, and farthest point sampling (FPS), which relies on the iterative identification of the
‘most diverse samples and discriminating features. We modify these unsupervised approaches,

i ing a supervised following the same spirit as the principal covariates (PCov)
regression method. We show how this results in selections that perform better in supervised tasks,
demonstrating with models of increasing complexity, from ridge regression to kernel ridge
regression and finally feed-forward neural networks. We also present adjustments to minimise the
impact of any subselection when performing unsupervised tasks. We demonstrate the significant
improvements associated with PCov-CUR and PCov-EPS selections for applications to chemistry
and materials science, typically reducing by a factor of two the number of features and samples
required to achieve a given level of regression accuracy.
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