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In atomic machine learning, we build models to relate the 
arrangement of atoms with microscopic properties.
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X = {x1, x2, ...xn}

When learning on a collection of atoms, we must encode the 
geometry in a numerical fingerprint which contains all relevant 
information.
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X = {4, 0, 0, 0, 0, 1, ...0}

ML representations vary based upon the goal of the ML model, 
and in many cases there is a simple representation that will 
suffice.
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M = X ·ma
Molar Mass Atomic Mass



What are the important aspects of an ML descriptor for typical 
atom-centered quantities?
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Figure adapted from: F. Musil, et al. Chem. Rev. 2021.



Many structure representations have been developed for ML of 
atomic-scale data.
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Figure adapted from: F. Musil, et al. Chem. Rev. 2021.



One way to encode the molecular geometry is by assuming a 
Gaussian centered on each atom.
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Figure adapted from: F. Musil, et al. Chem. Rev. 2021.



One way to encode the molecular geometry is by assuming a 
Gaussian centered on each atom, and then integrating over all 
translations and rotations.
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A popular schema for ML models of materials is the three-body 
SOAP (smooth overlap of atomic positions).
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How do we know which featurization to use?

Roughly speaking, better 
features lead to better 
predictions

We can compare features 
with respect to a property 
like forces

But how do we compare 
features independent from 
properties?
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We can use feature reconstruction measures to compare 
features representing the same structures.
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Goscinski, A., et al. (2021).  The role of feature space in atomistic learning. Machine Learning: Science and Technology, 2(2), 025028.



Why not just use the most extensive set of features?

August 19, 2021 U.S. Army CCDC Soldier Center 17

Accuracy

Number of Features

Computational 
Cost

Interpretability

Dimensionality 
Reduction 

Techniques



Hybrid Unsupervised-
Supervised Dimensionality 
Reduction
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A couple words on notation…
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A matrix containing as rows the fingerprints of a set of structures

' =
($
(%
…

A matrix containing as rows the target properties for a set of structures

)*+ A matrix that projects from space , to space -
. = !)/0 A matrix containing as rows the latent-space projection of a set of structures



Principal Components Analysis (PCA) 
PCA determines an information-rich set of features to represent a larger set of features. 
PCR uses this set of features to predict a target.
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Principal Covariates Regression (PCovR)
PCovR determines an information rich set of features to represent a larger set of features and
optimally regress a set of targets.
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Principal Covariates Regression (PCovR)
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01 = 2$$( + 3 − 2 4.4.5 67 = (783/:$5)01($783/:)
1 → 01 7 → 67

This is solved by constructing the projectors from the 
eigendecomposition of either a modified Gram matrix 

or a modified covariance

B. A. Helfrecht, RKC, G. Fraux, and M. Ceriotti. 2020 Mach. Learn.: Sci. Technol. 1 045021
S. de Jong, H.A.L. Kiers, Chemom. intell. lab. syst. 14 (1992) 155-164.
scikit-cosmo.readthedocs.io

This is solved by constructing the projectors from the 
eigendecomposition of either a modified Gram matrix 

or a modified covariance

This is solved by constructing the projectors from the 
eigendecomposition of either a modified Gram matrix 

or a modified covariance

loss in reconstructing Y

loss in reconstructing X

scikit-cosmo.readthedocs.io


Principal Covariates Regression (PCovR)
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Kernel Principal Covariates RegressionPrincipal Covariates Regression
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Principal Components Regression

K&' = k )&, )' = ,-. )/-)0
1

B. A. Helfrecht, RKC, G. Fraux, and M. Ceriotti. 2020 Mach. Learn.: Sci. Technol. 1 045021
S. de Jong, H.A.L. Kiers, Chemom. intell. lab. syst. 14 (1992) 155-164.
scikit-cosmo.readthedocs.io

Kernel Principal Covariates Regression
Core to PCA / PCovR is the gram kernel, which is equivalent to the linear kernel. 
We can replace this with any number of non-linear kernels to better represent non-linear structure-
property relations.

gram matrix, 
a.k.a. “linear kernel”

non-linear kernel

scikit-cosmo.readthedocs.io


Analysis of SOAP features of Ab-Initio Random Structure Search 
(AIRSS) carbon crystals and their energies in eV/atom
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B. A. Helfrecht, RKC, G. Fraux, and M. Ceriotti. 2020 Mach. Learn.: Sci. Technol. 1 045021
C. J. Pickard. AIRSS Data for Carbon at 10GPa and the C+N+H+O System at 1GPa (2020).
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B. A. Helfrecht, RKC, G. Fraux, and M. Ceriotti. 2020 Mach. Learn.: Sci. Technol. 1 045021
C. J. Pickard. AIRSS Data for Carbon at 10GPa and the C+N+H+O System at 1GPa (2020).
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B. A. Helfrecht, RKC, G. Fraux, and M. Ceriotti. 2020 Mach. Learn.: Sci. Technol. 1 045021
C. J. Pickard. AIRSS Data for Carbon at 10GPa and the C+N+H+O System at 1GPa (2020).
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https://www.materialscloud.org/discover/kpcovr/carbons-05

Powered by chemiscope.org
B. A. Helfrecht, RKC, G. Fraux, and M. Ceriotti. 2020 Mach. Learn.: Sci. Technol. 1 045021
G. Fraux, RKC, M. Ceriotti. 2020. Journal of Open Source Software, 5(51), 2117. 
B. A. Helfrecht, RKC, G. Fraux, and M. Ceriotti. Materials Cloud Archive 2020.80 (2020).
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Phase Diagram of Disordered Silicon 
as it transitions to a metallic state

at increased pressure

V. L. Deringer, et al., Origins of structural and electronic 
transitions in disordered silicon. Nature 589, 59–64 

(2021). , pages 59–64 (2021).  



What if the features carry inherent meaning?
Many dimensionality reduction techniques construct a new set of features, but what if you want to just work with a 
subset of the old set?

August 19, 2021 U.S. Army CCDC Soldier Center 30

Feature Selection

X X*

Principal Components Analysis

X T
!"#

!#"
X T

!"#

!#"



A few more words on notation…
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!" A selection of columns from !

!# A selection of rows from !

$% The pseudo-inverse of $

&$ A matrix containing the eigenvectors of $
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Metric
Area
Population
Median Income
Date Established
# of hipster coffee shops
# of lakes that they touch

Wrapper
Smallest à Largest
Largest à Smallest

Representative of the 
Overall Distribution

Data Sub-selection carries two components: 
the metric and the wrapper
This is true of both feature and sample sub-selection



2. Compute distance (
3. Choose point with highest min ( to the selected points

1. Choose a first point

Farthest Point Sampling (FPS)
FPS aims to select a diverse subset of features or samples that 
cover the greatest portion of sample or feature space.
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Feature Selection

Farthest Point Sampling (FPS)
FPS aims to select a diverse subset of features or samples that 
cover the greatest portion of sample or feature space.
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d"# = %" − %#
'

d"# = C"" − 2C"# + C##
covariance matrix

+ = %,%



1. Compute importance score !
2. Choose column with highest !
3. Orthogonalize with respect to last chosen column.

CUR Decomposition
Traditional CUR decomposition selection aims to 
select “important” features or samples from the overall distribution.

August 19, 2021 U.S. Army CCDC Soldier Center 35
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Head Canon:
“Columns und Rows” decomposition
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Feature Selection

CUR Decomposition
Traditional CUR decomposition selection aims to 
select “important” features or samples from the overall distribution.
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Feature SelectionFeature Selection

Both FPS and CUR use feature metrics that can be written in 
terms of feature covariances (C).

Farthest Point Sampling (FPS)
FPS aims to select a diverse subset of features or samples that 
cover the greatest portion of sample or feature space.

CUR Decomposition
Traditional CUR decomposition selection aims to 
select “important” features or samples from the overall distribution.
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Feature SelectionFeature Selection

Both FPS and CUR

Farthest Point Sampling (FPS)
FPS aims to select a diverse subset of features or samples that 
cover the greatest portion of sample or feature space.

CUR Decomposition
Traditional CUR decomposition selection aims to 
select “important” features or samples from the overall distribution.
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can be adapted to use PCovR-style

!d#$ = !C## − 2!C#$ + !C$$
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Linear Regression
Using PCov-style feature selection will 
universally out-perform common feature 
selection metrics available via popular 
packages.
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RidgeCV RFE

Univariate Feature 
Regression
Fisher Score

Mutual
Information
Laplacian Score

RKC, et al 2021 Mach. Learn.: Sci. Technol. 2 035038
scikit-cosmo.readthedocs.io

Inputs: SOAP vectors for small molecules containing C + H + N + O, (9 / 1) train / test split
Target: NMR chemical shieldings in ppm

Model used: 5-fold cross-validated linear ridge regression

Using All Features

Random Features

Linear Regression
Using PCov-style feature selection will 
universally out-perform common feature 
selection metrics available via popular 
packages.

scikit-cosmo.readthedocs.io


Behler-Parinello
Neural Networks
Introducing supervised aspects to feature 
selection invariably improves regression 
performance – even in non-linear models 
-- such as determining energies and 
forces using a neural network.
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RKC, et al 2021 Mach. Learn.: Sci. Technol. 2 035038
scikit-cosmo.readthedocs.io

Inputs: symmetry functions of benzene rings from a simulation trajectory, (7/2/1) train / validation / test split
Target: energies in [meV / atom] 

Models used: 5-fold cross-validated linear ridge regression, Behler-Parinello Neural Network

scikit-cosmo.readthedocs.io
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PCov-
CUR

CUR FPS

PCov-
FPS

Kernel
PCovR

PCovR

Feature 
Recon-

struction
Measures

scikit-COSMO
scikit-COSMO is a collection of scikit-learn compatible utilities 

that implement methods developed at COSMO.

scikit-cosmo.readthedocs.io
https://www.github.com/cosmo-epfl/scikit-cosmo/

chemiscope
chemiscope is an interactive 

structure/property explorer for 
materials and molecules. The goal 

of chemiscope is to provide 
interactive exploration of large 

databases of materials and 
molecules and help researchers to 

find structure-properties 
correlations inside such 

databases.
chemiscope.org

kernel-tutorials
A set of utilities and pedagogic 
notebooks for the use of linear 

and kernel methods in atomistic 
modeling

https://www.github.com/cosmo-
epfl/kernel-tutorials/

librascal
A scalable and versatile library to 

generate representations for 
atomic-scale learning

https://www.github.com/cosmo-
epfl/librascal/

scikit-cosmo.readthedocs.io
https://www.github.com/cosmo-epfl/scikit-cosmo/
http://chemiscope.org/
https://www.github.com/cosmo-epfl/kernel-tutorials/
https://www.github.com/cosmo-epfl/librascal/
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scikit-COSMO
scikit-COSMO is a 
collection of scikit-
learn compatible utilities 
that implement methods 
developed at COSMO.
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CUR FPS
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PCovR PCovR

GFRD
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